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Abstract 

As automated scoring of complex constructed-response examinations reaches operational status, 

the process of evaluating the quality of resultant scores, particularly in contrast to scores of 

expert human graders, becomes as complex as the data itself. Using a vignette from the 

Architectural Registration Examination (ARE), this paper explores the potential utility of 

classification and regression trees (CART) and Kohonen self-organizing maps (SOM) as tools to 

facilitate subject matter expert (SME) examination of the fine-grained (feature level) quality of 

automated scores for complex data, with implications for the validity of the resultant scores. The 

paper explores both supervised and unsupervised learning techniques, the former being 

represented by CART (Breiman, Friedman, Olshen, & Stone, 1984) and the latter by SOM 

(Kohonen, 1989). Three applications comprise this investigation, the first of which suggests that 

CART can facilitate efficient and economical identification of specific elements of complex 

solutions that contribute to automated and human score discrepancies. The second application 

builds on the first by exploring CART’s value for efficiently and accurately automating case 

selection for human intervention to ensure score validity. The final application explores the 

potential for SOM to reduce the need for SMEs in evaluating automated scoring. While both 

supervised and unsupervised methodologies examined were found to be promising tools for 

facilitating SME roles in maintaining and improving the quality of automated scoring, such 

applications remain unproven and further studies are necessary to establish the reliability of these 

techniques.  

 

Key words: Automated scoring, computerized simulations, classification and regression trees, 

neural networks, human scoring, human computer agreement, quality control  
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The rapid pace of advances in computer processing speed, storage capacity, graphics, 

multimedia and Internet applications has provided the capability to research and field fully 

computerized delivery and scoring of complex constructed-response tasks. Emerging capabilities 

for automated scoring of such tasks target particular advantages over scoring with expert human 

graders, including improved granularity of assessment, assured reproducibility of evaluations, 

known consistency in application of scoring criteria, complete tractability of scoring rationale, 

improved task specification, assured objectivity, improved reliability, and greater scoring 

efficiency (Williamson, Bejar, & Hone, 1999). Automated scoring also extends the advantages 

offered by computerized testing using multiple-choice items, such as year-round testing, remote 

testing, Web-based assessment, and adaptive testing, among other benefits. Potential advantages 

of computerization have inspired a variety of investigations of automated scoring of complex 

constructed-response tasks such as free-text entry essays (Burstein, Kukich, Wolff, & Lu, 1998); 

medical practice simulations (Clauser, Subhiyah, Nungenster, Ripkey, Clyman, & McKinley, 

1995; Clyman, Melnick, & Clauser, 1995), mathematics (Bennett & Sebrechts, 1996; Sebrechts, 

Bennett, & Rock, 1991; Bennett, Steffen, Singley, Morley, & Jacquemin, 1997); computer 

programming (Braun, Bennett, Frye, & Soloway, 1990); computer networking (Bauer, 

Williamson, Steinberg, Mislevy, & Behrens, 2001); and aircraft diagnostics (Mislevy, 1994; 

Mislevy, 1996). The National Council of Architectural Registration Boards (NCARB) has 

implemented simulations for several graphic divisions of the Architect Registration Examination 

(ARE) (Bejar, 1991; Bejar & Braun, 1994; Kenney, 1997), which has provided the data for this 

paper. As many of these examples are currently being implemented, or are soon to be 

implemented, in operational assessments in educational and professional settings, it is clear that 

automated scoring of complex constructed response is now within the realm of applied 

measurement with important implications for decision-making. This paper explores classification 

and regression trees (CART) and Kohonen self-organizing maps (SOM) as potential techniques 

for improving the efficiency and effectiveness of subject matter expert (SME) evaluation of 

automated scoring for assessments using complex constructed-response tasks. 

On the Role of Subject Matter Experts in Automated Scoring 

It has long been recognized (e.g., Greene, 1941, p. 131) that all scoring processes, 

whether human or automated, must be undertaken in two fundamental stages: evidence 

identification, in which work products are examined for evidence of ability; and evidence 
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accumulation, in which summary conclusions are derived on the basis of this evidence (see 

Almond, Steinberg, & Mislevy, 2002 for a more complete description of the four-process model 

of test administration/scoring that includes discussion of evidence identification and evidence 

accumulation). Expert human graders are well suited for evidence identification within their 

domains of expertise. Yet, even experts struggle with evidence accumulation for complex 

situations—a situation for which automated (statistical) methods can offer demonstrable 

improvements (e.g., Meehl, 1954). The potential improvement in accuracy of evidence 

accumulation over expert human graders, coupled with other advantages of automated scoring 

(e.g., Williamson et al., 1999), has motivated efforts to reduce or eliminate human scoring in 

favor of automated scoring.  

Despite the fallibility, cost, inconsistency, and inefficiency of expert human graders it is 

precisely these expert human graders who remain the best resource for development of 

automated scoring algorithms and who serve as the baseline for validation (e.g., Clauser, 

Margolis, Clyman, & Ross, 1997; Sebrechts et al., 1991; Williamson et al. 1999). However, the 

role of expert human graders in postimplementation evaluation of automated scoring has 

received less attention in the literature. One cannot assume that once automated scoring is 

validated for operational use, there will be no further need for experienced human graders. 

Ongoing evaluation of operational assessment is a fundamental aspect of validity (e.g., Messick, 

1989; Cronbach, 1988), and a multitude of characteristics of assessment administration and 

scoring (even interface design and circumstances of administration) can have validity 

implications (Bennett, & Bejar, 1998). Therefore, responsible researchers are adhering to the 

principle of validity that argues, “especially when an instrument is young, inquiry that clarifies 

possibilities, anomalies, and boundary conditions—formative evaluation—is worth most” 

(Cronbach, 1988, p.4). As such, postadministration analyses must be conducted for complex 

tasks scored with automated scoring systems just as they are routinely conducted for their 

multiple-choice counterparts. Operational implementation provides an opportunity to evaluate 

automated scoring for the full range of responses submitted by examinees. This facilitates 

identification of rare and/or unanticipated circumstances that may cause automated scoring to 

fail. Therefore, a critical part of the body of evidence needed to support the validity of an 

operational assessment is the ongoing evaluation of automated scoring. The current challenge for 

applied researchers is to define and communicate best practices for maximizing the effective use 
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of expert human graders in ongoing operational evaluation of automated scoring—in an 

environment where diminishing returns may be expected from such postvalidation efforts.  

Subject Matter Experts in Operational Evaluation 

In operational evaluation of automated scoring five fundamental steps must be 

undertaken for each submitted response: 

1. Determine automated and human scores.  

2. Evaluate agreement between automated and human scores and identify 

discrepancies. 

3. Select a discrepant case and identify cause(s). 

4. Determine which “perspective” (automated, human, or some compromise) should 

stand as the evaluation of the examinee’s response. 

5. If the decision implies a change to automated scoring, devise and apply an alteration 

to the algorithm and/or assessment procedures generalizable to all responses. For 

fairness, this would imply the need to reprocess and reevaluate all submitted 

responses. If the decision is in favor of automated scoring, record as an instance of 

demonstrated advantage.  

SMEs are central to these processes. Initially, SMEs are needed to obtain operational 

quality scores (as if human evaluation was the sole means for scoring), whether 

evaluation/scoring is conducted onsite or through remote scoring (e.g., Zhang, Powers, Wright, 

& Morgan, 2003). The evaluation of agreement is a relatively straightforward comparison of 

scores on the common scale when checking summary evaluations. However, for more complex 

scoring rubrics, once the evaluation of agreement extends to the more fine-grained layers of 

scoring criteria hierarchy the opportunity for discrepancies can grow substantially. 

Simultaneously, the relevance and importance of the discrepancies can diminish to issues of 

minutiae that are unlikely to impact summary scores (Bennett & Sebrechts, 1996; Braun et al., 

1990). The determination of which perspective on scoring is accepted as the score is a key 

process with a risk for self-preferential bias. This suggests a need for a committee of SMEs with 

membership that balances considerations of those who may be “invested” in either human or 
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automated scoring. To the extent possible, it is advisable that committee judgments be conducted 

blind to the source (automated or human) of the discrepant scores. 

A concern of applying a proposed resolution (other than the technical feasibility required 

for algorithmic changes) is the risk of satisfying the immediate source of one or more scoring 

discrepancies at the expense of creating discrepancies where none previously existed. To 

mitigate such risk, all scoring changes must be implemented experimentally to assess the impact 

on all responses (and potential new discrepancies) before making changes to an operational 

system. Another issue to be cognizant of with regard to these committee activities is the potential 

for the personal characteristics of committee members (and the human tendency to be less than 

perfectly consistent in applying evaluation criteria and producing summary scores) to threaten 

the generalizability of decisions to the universe of the domain. In the extreme, this can result in a 

“round robin” of successive committees chasing their algorithmic tails as each new committee 

composition produces new recommendations for minute changes in automated scoring that 

reflect its own particular perspectives. A potential solution is to require some additional controls 

(such as reaching a threshold of impact on solution scores and/or further independent committee 

confirmation) before alteration of the automated scoring algorithm. 

Operational evaluation faces a core challenge of identifying causes of discrepancy 

between automated and human scores. This requires the direct comparison of the rationales of 

automated scoring (embodied in the algorithm) with that of human graders. For automated 

scoring the rationales are transparent, given knowledge of the algorithm, while for human 

graders the true rationale can be elusive and circumstantially variable, even when following 

rubrics and documenting rationales for decisions. The potentially elusive and variable nature of 

human score rationale contributes to the laborious and uncertain nature of determining causes of 

discrepant scores. Even when the original human grader is present, the elicitation of a rationale 

can be problematic as there are occasions when human graders are unable to produce a 

justification for a score that they themselves produced (e.g., Williamson et al., 1999). 

The goal of operational evaluation is twofold: to identify differences in scoring rationale 

between human and automated scoring and to assess the potential impact of any discrepancies on 

scoring outcomes, and thus validity. The challenge for review committees in meeting this goal is 

to use observed discrepancies to identify differences in human and automated scoring rationale 

then determine whether such differences pose a threat to the veracity of automated scoring 
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outcomes, thus implying a need for resolution. This process demands more cognitively of the 

review committee than scoring demands of the human graders. The review committee must not 

only evaluate responses under the human scoring rubric (that is, replicate the process of human 

graders), but it must also: 

• infer the human graders’ situation-specific rationale in applying the rubric, 

• understand the rationale embodied in the automated scoring algorithm,  

• contrast the automated rationale with the inferred human rationale, 

• determine whether a difference in rationale poses a threat to automated scoring 

validity, and  

• devise a generalizable resolution to the difference in rationales. 

The same advantages of accuracy and efficiency in dealing with complexity promised by 

automated scoring may also apply for the complex process of evaluation in review committee. 

That is, automated algorithms may be able to compare, classify, and propose hypotheses about 

the nature of differences in automated and human scoring rationale for review committees. Such 

algorithms may also provide a form of sensitivity analysis by providing some sense of the extent 

to which any differences in rationale result in score discrepancies. 

Automated Tools Assisting Subject Matter Experts 

The challenges SMEs face in dealing with complexity are well known and the impetus 

for automated scoring is based on overcoming such inherently human limitations, as well as 

increasing scoring efficiency and convenience. The same methods used to deal with the 

complexities of automated scoring may also be potential tools for review committees dealing 

with complexities in resolving discrepancies between automated and human scoring. 

Specifically, it would be advantageous if automated tools existed to assist SMEs in: 

1. gaining insight into their own scoring criteria (i.e., discovery of implicit criteria); 

2. gaining insight about the way they draw summary conclusions from features of 

responses;  

3. identifying inconsistencies and/or undesirable tendencies in SME scoring; 
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4. identifying needed changes to automated scoring, both immediate and evolutionary, 

including the inclusion/exclusion of criteria from automated scoring, differential 

weighting of criteria, and differential consideration of approximations to correct 

implementation of responses; 

5. determining causes of scoring discrepancies between human and automated scores; 

6. locating and correcting the automated scores for responses that require human 

intervention; and  

7. distinguishing between important and inconsequential differences in scoring rationale 

between human and automated scoring with respect to impact on resultant scores. 

A means by which automated tools may facilitate these processes is to filter responses by 

score discrepancy, classify responses by the apparent indicators of such discrepancy, and use this 

interaction between nature of score discrepancy and patterns present in responses to propose 

hypotheses about differences between automated and human scoring rationale. Such automated 

tools would promote efficient and cost-effective SME effort in review committees and therefore 

have implications for the feasibility and practicality of continued evaluation of operational 

automated scoring. 

This paper explores CART (Breiman et al., 1984) and Kohonen SOMs (Kohonen, 1989) 

as potential automated tools for facilitating the accuracy, efficiency, and cost-effective use of 

human experts in automated scoring development and implementation. These methods are 

employed as automated filters for responses. Such filters would ease the tasks of SMEs by 

presenting the nature of discrepancies, the key indicators of discrepancy as hypotheses about 

differences in rationale, and frequencies of occurrence at the outset of committee processes. 

Beyond these fundamental steps, these methods may also serve to predict whether responses 

require human intervention to produce a valid score.  

Automated tools for classifying responses in optimal groups for the work of SMEs would 

be of substantial benefit. The initial classification could be based on the nature and direction of 

score discrepancy. Subclassification could be based on patterns within responses associated with 

the discrepancy. Resultant sets of responses could be presented to SMEs as sets with a common 

tendency to elicit a particular type of discrepant scores as a function of differences in automated 
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and human scoring rationale. Indicators of the characteristics of the response could be used by 

the committee for initial hypotheses about the nature of differences in rationale. The number of 

responses comprising such a set also suggests the prevalence, and therefore the potential impact, 

of any discrepancy. The utility of such a presentation is in facilitating review committee work by 

informing members of systematic discrepancy, proposing indicators of cause, identifying 

frequency of occurrence of discrepancy as a result of such causes.  

Effective automated tools for SME evaluations would facilitate identification and 

resolution of two classes of automated and human scoring discrepancy. First-order findings have 

direct and immediate implications for score validity. This is typically due to a substantial failing 

of automated scoring or other critical elements of the assessment that directly impact scoring and 

may require human intervention. In practice, a variety of circumstances (e.g., programming 

limitations, interface limitations, software packaging, and distribution, etc.) may delay correcting 

such malfunctioning aspects of automated scoring. Therefore, it would be useful for an 

automated tool to also be capable of efficiently identifying responses that may be affected by the 

malfunction for intervention prior to release of scores. Second-order findings are automated 

scoring or related issues that are not a threat to score validity but provide opportunity for future 

modifications. In these instances, automated scoring is performing in a valid fashion, but a 

committee of experts may have suggestions for scoring adjustments. Examples include different 

recommended weightings of criteria, different tolerance for less-than-perfect implementations of 

criteria, and inclusion or exclusion of marginally important criteria. Of course, any two groups of 

experts may disagree on some aspects of practice, so such findings should typically be 

considered as recommendations rather than flaws in automated scoring. The consideration of 

second-order issues can enhance possibilities for the future evolution of the assessment and the 

automated scoring. 

Unlike automated scoring, the purpose of automated tools facilitating SME evaluations is 

to facilitate rather than supplant SMEs’ contribution to automated scoring development and 

operational evaluation. Automated classification tools can be applied to facilitate SME 

responsibilities for many aspects of assessment development and implementation (e.g., for 

standard setting see Bejar & Whalen, 1997). This paper briefly discusses both CART and SOM, 

explores how they may facilitate the role of SMEs in development and operational evaluation of 

automated scoring, and provides an application to a vignette from the ARE. 
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Classification and Regression Trees 

CART, or classification and regression trees2 (Breiman et al., 1984; Winston, 1992) are a 

tool for classification problems in which the target of inference is a discrete classification or 

prediction (dependent variable) produced on the basis of other variables (independent variables). 

CART has been successfully applied to classification problems in psychometrics (e.g., Sheehan, 

1997, for proficiency scaling and diagnostic assessment; Bejar, Yepes-Baraya, & Miller, 1997, 

for modeling rater cognition; and Holland, Ponte, Crane, & Malberg, 1998, in computerized 

adaptive testing) and has some similarities to linear regression. Both CART and linear regression 

begin with data consisting of a set of observations for which both the independent variables and 

the dependent variable are known called the training set. This data forms the basis for “training” 

the model for prediction of the dependent variable from the independent variables. Such 

methods, which require training data for which observations on both the independent variables 

and the dependent variable of interest are available, are referred to as supervised learning 

techniques. In linear regression these training data are used to derive a linear equation. This 

equation is used to predict the value of the dependent variable on the basis of the independent 

variable values for subsequent cases. In this prediction, linear regression uses the value of each 

independent variable in the equation simultaneously to predict the dependent variable. CART 

also uses training data to derive a classification tree (tree-based vocabulary is pervasive in 

CART, from growing the tree to the establishment of pruning criteria to reduce the size of a 

tree). This tree predicts the dependent variable on the basis of the independent variables for 

subsequent cases, so the method and output of CART differs from linear regression. Figure 1 

provides an example of a classification tree from a CART analysis (Steinberg, & Colla, 1992) of 

a classic data set (iris flower species) used by R. A. Fisher (1936) to illustrate discriminant 

analysis. The training data consists of 150 flowers; each flower has a dependent variable of 

species (50 flowers each of setosa, versicolor, and virginica) and four independent variables: 

petal length, petal width, sepal length, and sepal width. 

The CART analysis uses a binary recursive partitioning algorithm to produce, or grow, 

the classification tree. This algorithm operates by conducting a series of binary partitions of the 

training data in which the data is divided into two subsets on the basis of the dichotomized value 

of a single independent variable. This variable is called the branching variable or splitting 

variable (e.g., all cases with a value greater than X on variable A are placed into one subset and 
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Node 1 
N = 150 

Is PETALLEN <= 2.450?

Node -1 
N = 50 

Class = 1 

Node 2 
N = 100 

Is PETALWID <= 1.750?

Node -2 
N = 54 

Class = 2 

Node -3 
N = 46 

Class = 3 

 Yes  No

 Yes No

 

Figure 1. Sample CART analysis classification tree for the iris data. 

 

all cases with a value less than or equal to X on variable A in the other). The partitioning 

algorithm selects the branching variable using a brute force method in which all possible splits 

for all variables in the analysis are considered for each binary partitioning. For example, if the 

data consisted of 200 cases with 10 independent variables CART considers up to 2,000 (200 x 10 

= 2,000) splits to conduct the binary partitioning. Any problem has a finite number of possible 

partitions, and CART searches through all possible splits when selecting the partition to 

implement for each binary partitioning. 

Once all possible partitions are completed, the algorithm conducts a rank ordering of the 

possible partitions on the basis of a quality-of-split criterion. Consistent with Breiman et al. 

(1984) this study uses the Gini index as the quality-of-split criterion, which is given by 

 

∑−=
j

jpGini 21         (1)  

 

where  is the proportion of cases in class j. The Gini index is 0 when the data consists of all 

cases in a single dependent variable category and is largest when the set contains the same 

number of cases in each dependent variable category.

jp

3 The Gini index partitions the data by 

targeting the extraction of cases from the largest class (the dependent variable class with the 
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highest n), if this is possible given the data and the values for the independent variables, and 

isolating them from the remainder of cases in the data. Then, in the next partitioning iteration it 

attempts the extraction of the next largest dependent variable class from the remaining data. This 

process continues with each recursive binary partition until all classes are exhausted or some 

other termination criterion is met (e.g., the lower limit of permitted n per subset is met). The final 

subset of data is then characterized as a particular type with respect to the dependent variable. 

Typically, the class assignment mirrors the dependent variable comprising the greatest 

proportion of cases in the subset. This rule can be modified to a loss function to account for the 

costs of making a mistake in classification and to adjust for over- or under-sampling from certain 

classes. 

In Figure 1 the diamond-shaped node labeled “Node 1” represents the first binary 

partitioning of the 150 flowers in the training set. The CART algorithm selected the value of 2.45 

for the petal length variable as the best choice for the first binary partition. If a flower has a petal 

length less than or equal to 2.45 (N = 50), then the flower is placed in the subset of data 

branching to the left of the decision node in Figure 1 (the “Yes” direction) where the termination 

criterion is met and no further partitioning is possible (homogeneous set of data with respect to 

the dependent variable). This partition terminates in the rectangle labeled “Node-1,” which is the 

coded classification for setosa species. If at the first partition a flower has petal length greater 

than 2.45 (N = 100), it is placed in the subset of data branching to the right of the decision node 

(the “No” direction) to the second partition labeled “Node 2.” 

The second partition uses petal width of 1.75 as the branching variable value, resulting in 

those cases with a petal width greater than 1.75 (N = 46) branching to the left to be classified as 

virginica (coded “Class-3”). Those with petal width less than or equal to 1.75 (N = 54) branch to 

the right to be classified as versicolor (coded “Class-2”). Note the classification error of four 

virginica flowers misclassified as versicolor in the “Class-2” node and that only two of the four 

independent variables were used in the classification tree. 

This classification tree of binary partitions and their outcomes represents the optimal use 

of independent variables for dependent variable classification. The classification tree then serves 

as a means of prediction for new cases without dependent variables. It subjects each case to the 

series of sequential decisions represented by the classification tree, from the first branch to the 

final classification, which is the predicted value of the dependent variable. As an illustration, 
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suppose we obtained an iris flower for which the petal measurements (independent variables) are 

available but the species (dependent variable) is unknown. We can classify the flower by 

subjecting it to the tests indicated by the branching variables in the classification tree. Suppose 

we observe a petal length (the first branching variable) >2.45 and so we branch to petal width, 

which is > 1.75 and so we classify the unknown flower as versicolor (Class = 2). This sequence 

of decisions about an individual case resulting in a final classification can be represented in table 

format by decision vectors representing the decision sequence and outcome of the classification 

tree. An example of such a set of decision vectors that correspond to Figure 1 is presented in 

Table 1. 

Table 1 

Decision Vectors Corresponding to the Iris Classification Tree 

 
Classification 

Node 1 
PETAL LEN. 

Node 2 
PETAL WID. 

1 <= 2.45  
2 > 2.45 <= 1.75 
3 > 2.45 > 1.75 

 

 

Several CART procedures help ensure a reliable classification tree. One such technique is 

successive growing and pruning of the tree. This technique involves initially growing a maximal 

tree, one that ignores termination criteria and continues partitioning until further partitioning is 

impossible. From this maximal tree, a number of alternative trees are produced by enforcing 

termination criteria to prune this tree to varying degrees. When the data set is sufficiently large 

the original sample is divided into a growing sample and a test sample. The growing sample is 

used to generate both the maximal tree and the pruned versions of this tree. The test sample is 

used to estimate each generated tree’s respective misclassification rates (adjusted by any 

specified misclassification costs) as a measure of fit, and the tree with the lowest 

misclassification cost is taken as the optimal tree. The reader may recognize the similarity 

between this procedure and procedures used to reduce the potential for overfitting in linear 

regression. 
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Another procedure, suitable when there is insufficient data for split-half growing and 

pruning, is 10-fold cross validation. This proceeds by dividing the data into 10 equal-n subsets 

with similar distributions on the dependent variable. Nine of these subsets are used to generate 

the maximal tree and the pruned versions of the tree, while the remaining section is used to 

obtain initial estimates of the error rates of the generated trees (again with the potential for 

incorporating misclassification costs). This process is repeated nine more times, with each 

iteration using a different one of the 10 sections as the section for determining error rates. The 

remaining nine sections are used to generate the trees. The results of the 10 iterations are 

combined into overall error rates for each of the generated trees, which are then used to 

determine the optimal tree. 

It should be noted that CART is appropriate for both discrete and continuous variables 

and that the use of a variable as a branching variable at one partition does not preclude the use of 

the same variable again at a subsequent partition. Furthermore, it is not uncommon to have a 

classification tree with multiple terminal classification nodes of the same classification (value of 

the dependent variable). Classification tree techniques are nonparametric and make no 

distributional assumptions, applicable to both exploratory and confirmatory analyses, and robust 

to outliers and missing data. They excel with complex data, and have been found to outperform 

certain competitive methodologies, such as discriminant analysis, (Michie, Spiegelhalter, & 

Taylor, 1994) for some data. 

In contrast with regression, the CART goal of developing simple tree structure can result 

in an independent variable being an important variable for prediction, even if it doesn’t appear in 

the tree as a partition variable. Therefore, CART also characterizes independent variables in 

terms of their importance to the series of recursive partitioning in the tree. Importance is 

calculated based on the quality-of-split measure attributable to each variable when treated as a 

surrogate (a substitute variable) for the primary splitting variable at each partition. These 

quality-of-split measures are summed across each partition for each variable and the values are 

then scaled relative to the best performing variable, which receives an importance value of 100. 

In the iris data set, for example, the most important variable is petal width, followed by petal 

length. 
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Kohonen Self-organizing Maps 

Kohonen SOMs (Kohonen, 1989) are a neural network methodology akin to such 

dimensionality reductions methods as cluster analysis. Like CART, neural networks may be used 

for supervised learning on the basis of a criterion variable. However, this study applies neural 

networks as an unsupervised learning technique, that is, without reference to the criterion value 

of interest (e.g., the dependent variable required in CART). As such, SOM (as applied in this 

study) requires no external variable or training set to classify data. Neural network nomenclature 

stems from methodological development based on the reaction of brain neurons to sensory 

stimulus. For example, Hubel and Weisel (1962) presented a set of alternating white and black 

lines to a particular neuron in the brain. They found that the neuron reacted most strongly when 

these lines were of a particular orientation and less strongly as the lines were changed from the 

neuron-preferred orientation to some other orientation. Neural networks evolved from findings 

that these neuron patterns of greater or lesser excitation to specific stimuli may be mapped. 

Various sensory inputs can be described as being “close” or “distant” from each other on the 

basis of metric properties of the sensory input, which is reflected in the patterns of neuron 

excitation and spatial location in the brain. Neural network methods simulate this brain behavior 

and regional specificity by establishing an artificial network, or grid, of simulated neurons. 

Through repeated exposure to patterns in data, case by case, each individual neuron is 

conditioned to be “excited” by specific patterns of a case in the data and “inhibited” by patterns 

that do not conform to the those “excitement” patterns. The end result is that each of the cases in 

the data become associated with the neuron most receptive to the pattern appearing in the 

particular case. That is, associations are made between neurons and cases with greatest similarity 

to the “desired” vector of the particular neuron. An artificial neuron in neural networks is a 

classification cell in which member cases have patterns of data that are similar to patterns 

expected in the cell, thus causing the excitation or activation of the artificial neuron and 

inhibition of other neurons in the network. These classifications of cases by neuron excitation 

can then be interpreted, using the established neural network metric, on the basis of their 

proximity to the other neurons in the network that contain other cases. 
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To illustrate neural networks, specifically the Kohonen SOM explored in this paper, 

Fisher’s iris data from the CART illustration is useful again. Because SOM is being applied as an 

unsupervised method, the input data, still referred to as the training set, for this example consists 

of the same set of iris flower measurements of petal length, petal width, sepal length, and sepal 

width, but without data on the species of flower. The SOM produces an array of artificial 

neurons, with each neuron having some initial weight (different for each neuron) attributed to 

each of the possible input variables, resulting in a weight vector for the neuron. An initial case 

vector, in this case one of the flower measurement vectors, is presented to the network and the 

artificial neurons all “compete” for this case. This competition is conducted by computing the 

Euclidean distance between the points represented by each neuron’s weight vector and the input 

vector, called the neuron’s activation level, for the case. As a result of this competition, the 

neuron with weights representing the closest match (the smallest Euclidean distance) to the case 

is the “winner” of the competition and the case becomes associated, or clustered, with the 

winning neuron. In turn, the weights of the “winning” neuron are permitted to adjust somewhat 

(the degree of adjustment is referred to as the learning rate) towards the case that was just 

associated with it. The neurons near the “winning” neuron, referred to as the neighborhood, are 

also permitted to adjust weights toward the case, but to a lesser extent than that of the winning 

neuron. This process of neuron competition for cases, case association, and updating of neuron 

vector weights in response to neuron association is continued for each case in the data set. For 

the iris data, each flower’s vector of values for petal length, petal width, sepal length, and sepal 

width acts as the input. The Euclidean distance is computed between the flower vector and the 

weights for the competing neurons, with the winning neuron becoming associated with the 

flower in question. This process is continued for each of the flowers in the data. 

Once the entire data set has been processed and each case associated with an artificial 

neuron, the entire training set is reprocessed in the same fashion. The weights for each artificial 

neuron that resulted from the initial processing serve as the initial weights for the reprocessing of 

the data. Although in the initial analysis of the data the neighborhood consists of the entire neural 

network, during the reprocessing of the data this neighborhood becomes more restricted around 

the winning neuron. In addition, the extent to which the weights for each neuron are altered after 

each case classification is also reduced from the initial processing of the training set. This 

iterative process of “learning” from the training set is repeated multiple times until, ultimately, 
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the neighborhood is restricted to the single winning neuron, the adjustment to the winning 

neuron’s weight becomes small, and termination criteria are met. Once neural network learning 

is complete, the association of each case with a particular neuron becomes the final classification 

of cases, with the regions of neighboring neurons in the network comprising regions of similarity 

among case classifications. Thus, a grid of artificial neurons is produced with each neuron 

associated more or less strongly with particular input data patterns. This grid of neurons and the 

cases comprise a pattern that might be conceptualized as a contour map of the data. Groups of 

similar cases cluster together in specific neurons or SOM regions and the number of cases 

associated with a particular neuron determines the “height” of various SOM neurons. An 

example of the output classification of Fisher’s iris data from a 1 x 3 SOM (a one-dimensional 

neural network) for the iris data is provided as Figure 2. In Figure 2 each box represents the 

location of a particular neuron (labeled Neuron 1 through Neuron 3) in the 1 x 3 SOM. 

Immediately beneath the neuron number is the number of iris flowers associated with that 

neuron, and thus the number of flowers classified together with the neuron. Beneath these neuron 

sample sizes are the iris species (setosa, versicolor, and virginica) corresponding to the neuron, 

with the percentage of flowers of that species associated with the neuron in question immediately 

following in parentheses. 

 

Neuron 1 
n = 31 
versicolor (74%) 
virginica (26%) 

Neuron 2 
n = 29 
versicolor (24%) 
virginica (76%) 

Neuron 3 
n = 30 
setosa (100%) 

 

Figure 2. A 1 x 3 Kohonen self-organizing map result classification for Fisher’s iris data. 

 

To the extent that various regions of the SOM correspond to certain aspects of interest in 

the data, such techniques permit rapid and efficient organization of complex data for a variety of 

purposes, including as proposed methods for automated scoring (e.g., Stevens, Ikeda, Casillas, 

Palacio-Cayetano, & Clyman, 1999). In addition, the representation of the data in a SOM 

provides a means for swiftly visualizing trends and tendencies within complex data. (For more 

about the Kohonen SOM, see Balakrishan, Cooper, Jacob, & Lewis, 1994; Murtagh & 

Hernandez-Pajares, 1995; Ripley, 1996; or Waller, Kaiser, Illian, & Manry, 1998). 
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Overview of the ARE 

The assessment data used to explore the utility of CART and SOM as automated tools for 

SME evaluation comes from the ARE. The ARE consists of nine divisions; six of which are 

multiple-choice CBT examinations and three of which are fully computerized graphic 

simulations of architectural design tasks. The candidate receives either a “Pass” or “Fail” for 

each division and must pass all divisions to become registered. Each of the three graphic 

divisions is made up of a series of small, focused design problems called “vignettes.” A total of 

15 different vignettes comprise the three graphic divisions of the ARE. An example of a base 

diagram representing the examinee starting point for an architectural design vignette not 

currently used in the ARE is provided as Figure 3. The candidate would complete the design of 

structures and their functional relationship on the given site using the CAD interface provided. 

(More information on the administration and scoring of the ARE may be found in Bejar & 

Braun, 1999; Kenney, 1997; and Williamson et al., 1999). 

The scoring of the ARE vignettes, referred to as a “mental model” approach (see 

Williamson et al., 1999), is the culmination of studies of the criteria, judgments, weighting, and 

considerations of expert human graders during holistic grading processes for operational paper-

and-pencil vignettes (Bejar, 1991; Oltman, Bejar, & Kim, 1993; Bejar & Braun, 1994). Scoring 

is automated and modeled after aspects of the human scoring processes (see Williamson et al., 

1999). One stage of automated scoring is the representation of elements of each candidate’s 

response to a vignette (called a solution) as features, or specific and distinct scoring components. 

Individual features may represent any one of a multitude of solution aspects. They could range 

from simple assessments of completeness (e.g., did the candidate provide all nine rooms in the 

building?) or measurements of important elements (e.g., distances, ratios, or slopes of and 

between objects) to more complex assessments of relations among various aspects of a solution 

(e.g., sunlight and shadows or the ability for building users to enter each space in a building from 

the lobby). For a more detailed account of how automated processes transform graphic design 

elements into these scoring features refer to Bejar (1991) and Oltman et al. (1993). 

In the automated scoring of each candidate’s vignette solution each feature is scored as an 

acceptable (A), indeterminate (I), or unacceptable (U) implementation of the required vignette 

feature. In this scoring the indeterminate (I) level represents a borderline implementation as 

judged by expert human graders who may disagree or be uncertain whether the implementation  
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Figure 3. Computer screen showing the base block diagram drawing upon which the 

candidate would construct buildings according to the vignette program requirements. 

 

is acceptable or unacceptable. Like the individual features, the total vignette is scored as an 

acceptable (A), indeterminate (I), or unacceptable (U) demonstration of competence in the 

targeted domain content. This total vignette score is determined through an aggregation process 

that mimics the “chunking” process used by expert human graders, who scored the individual 

elements, grouped the element scores into blocks of related elements for which they made 

summary judgment, and scored several such sets of elements to determine the final vignette 

score. This expert human grading process for dealing with complexity was reproduced in the 

structure of the “mental model” for automated scoring. 

CART and SOM as Automated Tools for SMEs 

As previously discussed, in a typical evaluation of automated scoring SMEs must: 

identify scoring discrepancies, infer aspects of human scoring processes, understand the 
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automated algorithm, contrast rationales of automated and human scoring, determine any threat 

to veracity of automated scoring, and devise a generalizable resolution. The complexity of 

solutions, the large volume of solutions, and the inherent limitations of human judgment 

processes make the identification of fine-grained flaws in automated scoring a difficult process.4 

The use of automated tools for classification of solutions prior to review are intended to improve 

the ability of SMEs to perform by conducting the first step (adequacy evaluation) and facilitating 

the second step (hypothesis development) by producing classifications that imply meaningful 

hypotheses about the nature of scoring discrepancies between automated and human scores. 

These tools might also be used to leverage preexisting solutions for which human scores are 

available (e.g., from operational administration prior to automated scoring, developmental 

efforts, validation studies, or through ongoing evaluation of operational implementation), subject 

the solutions to automated scoring, apply the automated tools to facilitate SME review, and 

conduct the final review and resolution of classification groups.  

There are two potential applications of these automated tools: explanatory, to help 

articulate the causes of discrepancies between automated scores and those of expert human 

graders; and predictive, for automated identification of solutions of specific interest, particularly 

those that require human intervention to maintain valid scores. This paper explores both potential 

applications.  

In the explanatory capacity, these procedures may make SME review more fruitful and 

efficient by eliminating discussion on issues that do not result in a human-automated score 

discrepancy (e.g., over minutia that can have no impact on the outcome of scoring). They help 

elicit more accurate representations of the criteria experts use during grading (by revealing 

implicit criteria or differential criteria weighting), or even eliminate the expense of convening a 

committee and instead permit expert review remotely over the Internet.  

In the predictive capacity, a targeted selection of cases expected to have human-

automated score discrepancy that would require a change to the automated score in order to 

maintain score validity would be more effective than random sampling techniques and more 

efficient than reviewing the entire body of examinee responses. This would be particularly true 

when the responses requiring human intervention are the result of rare combinations of response 

elements, which is a more likely situation than pervasive instances once an automated scoring 

system becomes operational. 

18 



The first two applications in this paper explore the potential utility of CART in 

exploratory and predictive capacities. The third application investigates the potential of SOM, 

applied as an unsupervised learning technique, to reduce the need for human experts in review 

processes by comparing the application of SOM without a criterion value to the results of the 

CART techniques. If similar results are obtained, SOM may be applied to sets of solutions 

without the prior calibration of data for which expert human evaluations are available, thereby 

reducing the need for SME evaluation in automated scoring development and operational 

evaluation. 

Application 1 

Method 

Data 

This application uses a training set of 326 candidate solutions for an ARE vignette that 

received both automated and human scores. The human scores were produced by a committee of 

six human graders experienced in holistic scoring of ARE solutions. The committee was divided 

into two groups so that three graders examined each solution and scoring was conducted 

according to their own documented holistic criteria (see Williamson et al., 1999). The vignette in 

question was selected for this study on the basis of its complexity. While it had a moderate 

number of scoring features for evidence identification in comparison to other ARE vignettes, 

these features included a mixture of relatively independent features and features that were highly 

interrelated but of varying degree of weighting in the evidence accumulation process. As such, 

this vignette was expected to provide the types of complexities commonly encountered in 

automated scoring of complex constructed-response tasks. 

Vignette scores, both automated and human, of A, I, and U were transformed to numeric 

representations of 3, 2, and 1, respectively and difference scores were computed by subtracting 

the numeric automated score from the numeric human score. These difference scores comprise 

the CART dependent variable (all variables were treated as categorical in CART analysis and the 

difference score was selected as a convenient means of identifying the degree and direction of 

categorical separation, if any, between the human score and the automated score). Automated 

scoring features, which comprised the CART independent variables, were also recorded as A, I, 
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or U by the automated evidence identification process and used to compute the final automated 

score of A, I, or U for each solution (Bejar & Braun, 1994). 

Design and Procedure 

This application addressed two aspects of CART. The first phase explored CART 

importance values as a tool for identifying malfunctioning features in automated scoring, and the 

second phase explored sets of solutions in CART classifications (terminal nodes in the CART 

tree) of interest for set-specific trends indicative of human and automated score discrepancies. 

The use of such solution pools in the second phase permits the targeting of specific types of 

differences in criteria or tolerances and weighting between human graders and automated 

scoring. That is, the classification tree acts as a filtering process that produces groups of 

solutions with consistent trends based on explicit type and degree of human and computer score 

discrepancy. 

The first step of Phase Two was to identify feature vectors representing the navigation of data 

through the classification tree to the terminal classification nodes (see the earlier CART 

discussion for an example of how feature vectors were derived on the basis of Fisher’s iris data). 

These feature vectors (labeled A through N) and their difference score are presented in Table 2, 

which is a representation of the CART trees for the ARE data in the same way that Table 1 is an 

alternative representation of Figure 1. However, Table 2 consists of categorical distinctions 

rather than divisions of continuous variables as in Table 1. There are a total of 13 binary 

partitions in the classification tree, represented in the table as columns N1-N13. Each binary 

partition indicator in the table also specifies the feature code (e.g., F2, F9) for the feature being 

evaluated at that partition. As previously mentioned, features can be used as a partitioning 

variable in multiple nodes of a classification tree. Feature vectors A, B, and C are associated with 

Terminal Node –2, in which the automated score was A and the human score was U. These 

feature vectors suggest solutions for which the human graders are using additional criteria not 

addressed by automated scoring, allowing less tolerance for less than perfect feature 

implementation, or utilizing greater weight for inadequate features in the solution. The opposite 

pole finds feature vectors M and N associated with solutions in which the human scores are 

higher than automated scores. Each set of solutions, based on feature vector, were examined by a 

registered architect for coherent architectural trends that would suggest the nature of differences 

between automated and human scoring. 
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Table 2 

Feature Vectors Utilizing the Difference Scores as the Dependent Variable 

Terminal 
node 
(difference 
score) 

Feature 
vector 

N1 
(F3) 

N2 
(F9) 

N3 
(F2) 

N4 
(F2) 

N5 
(F13) 

N6 
(F5) 

N7 
(F2) 

N8 
(F5) 

N9 
(F2) 

N10 
(F2) 

N11 
(F1) 

N12 
(F5) 

N13 
(F1) 

–2               A I,A I,A I
–2              

             
               
              
              
              
               

                
              
               
                
                
                

B I,A I,A U,A I,A U
–2 C U U,A I,A U,A 
–1 D I,A U A U
–1 E I,A I,A U,A U
–1 F I,A I,A U,A I,A U
–1 G U U,A I,A I
–1 H U I U
0 I I,A U U,I
0 J I,A I,A U,A I,A I,A I,A 
0 K U U,A U
0 L U I I,A U,I
1 M I,A U A I,A
1 N U I I,A A
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Results 

The discussion for this paper references a hypothetical “exemplar” vignette context that 

has characteristics altered from the actual vignette to permit discussion of findings while 

maintaining test security. Although all analyses and results are from the actual operational 

vignette (including the use of the same feature nomenclature), the vignette task and feature 

characteristics are altered for security purposes. However, in this alteration of context the 

hypothetical features retain the same purpose and functional relationships, including dependence 

characteristics very similar to the “live” features, to maintain the fidelity of discussion to the 

actual feature findings. (To remind the reader of fabricated nature of content discussion that 

mirrors real findings about operational features, invented vignette detail will be indicated with an 

asterisk). For this exemplar vignette the candidate would begin with a floor plan showing an 

open office area, a cubicle within the open office area, and toilet facilities. The candidate would 

then be required to complete the floor and roof plans according to specific requirements (an 

example of a completed solution is provided as Figure 4).  

 

 

 

Figure 4. Floor plan, roof plan, and section view of the exemplar vignette showing the 

location of additional skylight as a result of candidate misinterpretation of the floor plan. 

 

A bar graph of CART feature importance is presented as Figure 5. The values suggest 

that feature F2 (skylight location*) is the major contributing factor to discrepancies between 

human and automated scoring, with F3 (flashing*), F9 (eave height*), F15 (water flow*), and F1 

(gutter length*) being contributing factors. Architectural review of vignette solutions with score 

discrepancies was conducted with emphasis on these features. A vignette requirement is that “all 

rooms must receive natural light,” the intention of which is to have the candidate place a skylight 
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in the roof over the toilet facilities, as this is the only room without windows. The architectural 

examination of the solutions with discrepant scores revealed that there were actually two 

skylights,* one in the required location for the toilet and the other placed over the cubicle area 

(indicated by the arrow in Figure 4*). For each skylight* the candidate would typically place 

flashing* (F3) around the skylight* and a cricket* (F15) to prevent water from leaking into the 

building. The placement of an extraneous skylight,* and the accompanying flashing* and 

cricket* would result in an unfavorable evaluation of these features by automated scoring. 

 

Relative Importance Using Difference Score Criterion
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Figure 5. Bar graph showing the relative importance of automated scoring features using 

the difference score as the dependent variable. 

 

From this observation and the fact that human holistic evaluations tended to give credit to 

these solutions (but not for placement of extra skylights* over other areas of the room) it was 

inferred that human graders made allowances for the previously unanticipated possibility that 

some candidates were interpreting the partitioned cubicle as a room. (The building section view 

of Figure 4 was not available to the candidate or the human graders but is included here for the 
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benefit of the reader.) Although not a deficiency in the automated scoring itself, this issue is 

potentially l ambiguous for candidates trying to fulfill the requirements of the vignette and so 

examinees were given credit for such a misinterpretation of the base diagram.  

Architectural examination of eave height* (F9) in the solutions with discrepant scores 

revealed that the human graders were occasionally overlooking this element in their evaluation 

process, despite the fact that it was included in their written criteria. Because the human graders 

would often rely on “eyeballing” to judge roof height* at various points, they occasionally 

missed cases in which the ridge height* and slope* were not consistent with the eave height*. An 

example presented in Figure 6* shows two roof plans (as seen by the candidate and human 

graders) and their associated building section views (created for this illustration).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Roof plans and section views of the exemplar vignette showing the correct 

implementation of eave height (top) and an incorrect implementation (bottom).  

 

Although many of these inappropriate implementations that human graders missed were 

of low to moderate severity, some were dramatically inappropriate. In this case CART 

techniques served to document a specific advantage of automated scoring. 

Architectural examination that emphasized the gutter length* (F1) feature revealed an 

apparent minor difference in the relative tolerance of less-than-perfect implementation and 
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weighting. Human graders appeared to have less tolerance of less-than-perfect implementation or 

greater weighting of the feature in aggregation than was implemented in the automated scoring.  

In Phase Two, the CART classification tree pools of solutions (the terminal nodes of the 

tree) containing discrepancies between automated and human scores (pools with feature vectors 

A, B, C, M, and N) were evaluated with the intent of identifying coherent trends that impacted 

score discrepancy. Architectural review of these solutions revealed specific types of differences 

in automated and human scoring processes associated with each CART feature vector. These 

differences are summarized in Table 3 and include the human use of criteria not considered in 

automated scoring, heavier weighting of existing criteria by the human graders than by the 

automated scoring, human graders overlooking a feature utilized in automated scoring, and 

human graders providing for possible misinterpretation of the base diagram by examinees.  

Table 3 

Summary of Architectural Review Findings for CART Vector Pools 

 

Feature 
vector 

N Findings 

A 30 Two additional criteria used by experts and experts weighting one 
feature (F2) more heavily than automated scoring. 

B  7 Heavier weighting of a particular feature (F5) by experts. 

C 25 Heavier weighting of a particular feature (F3) by experts. 

M 15 Experts overlooking a feature (F9). 

N 30 Experts providing lenience for candidate misinterpretation of base 
diagram. 

Two of these causes of discrepancies were also identified in Phase One as discussed 

above, providing some corroborating evidence of the previous findings. As such, the CART 

feature vectors were able to assist in a characterization of the vignette solutions by the specific 

issues that caused the discrepancy between human and automated scores. Of particular interest is 

the tendency for feature vector N to characterize cases where candidates are misinterpreting the 

floor plan in the base diagram, first-order instances in which human intervention is necessary to 

maintain the validity of automated scores. 
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Discussion 

Phase One utilized CART relative importance values as indicators of sources of 

discrepancy between human graders and automated scoring. This resulted in the identification of 

a first-order validity issue of potential ambiguity in the base diagram that required human 

adjudication to maintain score validity. The CART relative importance values also led to the 

identification and documentation of a specific advantage of automated scoring in providing a 

more accurate determination of feature F9. The use of classification trees therefore appears 

capable of assisting in the identification of sources of scoring discrepancies, both for the 

improvement of scoring and in the documentation of relative merits of competing scoring 

procedures. This technique is not limited to human-automated score comparisons; a similar 

procedure could be used to compare competing methods of automated scoring or differences in 

human scoring (e.g., Bejar et al., 1997). 

Phase Two used CART feature vectors to produce pools of related solutions with score 

discrepancies in order to more easily identify potential causes of discrepancies. This procedure 

identified the same issue from Phase One regarding candidate misinterpretation of a base 

drawing (from vector N). This examination also corroborated Phase One in identifying a specific 

feature for which automated scoring has an advantage over human scoring. The fact that this 

corroboration was accomplished with fewer solutions being examined suggests that examination 

of solution pools from the classification tree has some advantage over reviewing the entire pool 

on the basis of importance values. In practice, this suggests that the importance values would 

best serve as a guide for examining the resultant pools of solutions from the classification tree 

rather than as a guide for examination of the complete pool of solutions. Several other issues 

were identified from the classification tree pools, including the identification of two elements 

that human graders were considering but which were not incorporated into automated scoring 

(feature vector A). Also identified were several features for which automated scoring appears to 

implement different weighting and tolerances than human graders (feature vectors A, B, and C), 

although some of these discrepancies appear to occur infrequently. 

The use of these techniques to classify solutions and conduct coherent reviews for 

sources of score discrepancy has obvious advantages over random selection and/or selection of 

100% of solutions for review. Of course, conscientious reviewers without automated tools would 

likely also use discrepancy between human and automated scores as a basis for selecting 
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solutions to review. However, using CART as an automated tool in the review process would 

appear to have specific advantages over even this best course for unaided review. Specifically, 

using only the degree and direction of score discrepancy (the full information available for 

classifying the solution discrepancies in the absence of more sophisticated automated methods 

emphasizing pattern recognition abilities) would result in solutions with feature vectors A, B, 

and C (all with discrepancy score of –2) being in a single, undifferentiated group of solutions. 

Similarly, solutions with feature vectors M and N (all with discrepancy score of 1) would be in 

another undifferentiated group. Yet it is evident from Table 3 that the application of CART 

techniques to classification is capable of yielding more fine-grained sets of solutions (e.g., sets 

with feature vectors A, B, and C), each containing solutions with consistent and coherent trends, 

but with different interpretations across sets. Most notably, these that feature vectors with the 

same value for the score discrepancy (feature vectors M and N) can have substantially different 

interpretations. One (vector M) supports the advantages of automated scoring over human scores, 

and the other (vector N) indicates of a situation in which there is a true problem with the 

assessment. Although it is certainly possible, if not likely, that the SMEs would identify these 

particular extremes from the unaided mixed set of vector M and N solutions, the ability to create 

more issue-specific data sets for analysis would nonetheless be advantageous. In particular, 

CART not only classified the solutions by nature of the causes of the scoring discrepancy, but 

also showed that these categorizations serve as immediate, automatically generated hypotheses 

about the cause of discrepancy between automated and human scoring. These hypotheses could 

then be used by the SME committee as starting points for their investigation of the scoring 

discrepancy. For example, feature vector A in Table 2 suggests to the reviewers that the source 

of discrepancy is strongly related to features F3, F2, and F9, and not other potential scoring 

features. The utility of this automatically generated hypothesis about the causes of scoring 

discrepancies between human and automated scores is by necessity focused only on the 

automated features. It cannot examine human feature scorings without those as input, yet it still 

serves several purposes for operational evaluation, including: 

• focusing SME attention on most likely sources of the discrepancy (initial hypotheses 

about the source of error generated for the SMEs), 
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• creating a coherent set of solutions that exemplify this discrepancy and the causal 

pattern contributing to the discrepancy for examination of trends across these related 

solutions, and  

• discouraging dwelling on “red herring” issues regarding minor scoring features or 

other issues that cannot impact the resultant summary solution scores. 

Indeed, for more subtle differences, greater variety of differences, and larger solution 

pools that characterize operational scoring review this ability to provide automatically generated 

hypotheses about the source of scoring discrepancy may mean the difference between success 

and failure in identifying issues that impact score discrepancy. This finding illustrates the 

potential for such automated tools to facilitate SME evaluations of automated scoring.  

Application 2 

Method 

Data 

This application utilized the same training set utilized in Study 1 and an additional set of 

1,117 operational candidate solutions for which no human scores were available. 

Design and Procedure 

This application builds on the first by exploring the predictive use of classification tree 

vectors as an automated solution selection algorithm to identify vignette solutions requiring 

human intervention to maintain score validity. Specifically, given that some candidates may be 

misinterpreting the cubicle as a room requiring a skylight, can classification tree vectors provide 

a means for identifying solutions where this misinterpretation would result in a different score? 

The benefit of automating the selection of solutions for both corrective and exploratory 

procedures is a potentially substantial increase in efficiency and corresponding reduction in 

effort and costs that avoids certain sampling risks. The first phase of this study explores a 

technique that maximizes overall accuracy and efficiency at the expense of omitting some 

solutions of interest (appropriate for exploratory reviews) whereas the second phase uses a 

technique that is more liberal in solution selection at the expense of efficiency (appropriate for 

score interventions to maintain validity).  
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Architectural examination of 100% of solutions (N = 1,117) that did not receive human 

scores was performed to identify and adjudicate scores for candidates who misinterpreted the 

cubicle as a room. This 100% examination and intervention process can be time consuming and 

costly. Because the first study suggests that feature vector N indicates cases for which candidates 

misinterpret the cubicle, the first phase investigates the direct use of this feature vector for 

identifying cases of candidate misinterpretation requiring score adjudication. Cases from the 

sample of 1,117 solutions with feature vectors matching vector N were identified, and the 

accuracy of solution selection for adjudication was evaluated on the basis of a 100% review. 

As the classification tree producing feature vector N was trained to classify solutions 

based on the criterion discrepancy between human scores and automated scores, the feature 

vector may not be as appropriate as one trained specifically to identify cases where intervention 

is required for the particular issue of candidate misinterpretation. Therefore, Phase Two of this 

study examines the use of a CART tree produced on the training set using discrepancy between 

original automated score and adjudicated score as the criterion. The resultant feature vector is 

used to select solutions requiring score adjudication from the sample of 1,117 solutions.  

Results 

Outcomes of utilizing feature vector N to identify solutions requiring score adjudication 

are presented as Table 4. The overall predictive error rate is low, with only 69 (6%) 

misclassifications. The use of feature vector N for case selection would substantially reduce the 

human review burden as only 114 (10%) solutions would be selected. This substantial efficiency 

would come at the cost of 40 (32%) of the solutions requiring score adjudication remaining 

unidentified. For such first-order interventions, in which candidate scores are being adjusted as a 

result of the selection process to ensure the validity of scores, this error rate is problematic. 

Therefore, this highly efficient but less accurate technique may be appropriate for exploratory 

reviews. For such exploratory reviews, the intent is not to adjudicate scores but to investigate the 

rate of occurrence or tendencies toward certain actions, ranges of particular types of solution 

implementations, or score discrepancies.  
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Table 4 

Solution Identification Accuracy of Feature Vector N 

Solution score Not vector N Feature vector N Row totals 
Changed   40  85   125 
Unchanged  963  29   992 
Column totals 1,003 114 1,117 

 

In Phase Two, the CART analysis identified a single feature, F2 (skylight location*), as 

the feature vector. The accuracy of using this feature vector for case selection from the sample of 

1,117 solutions is presented as Table 5. The overall classification error rate of this technique is 

higher than for feature vector N selection, with 229 (21%) misclassifications. The use of this 

feature vector reduces the burden and expense of the review process, though not to the extent of 

feature vector N, as 354 (32%) of all cases were selected for review. An advantage of using this 

feature vector for the example in question is that all of the solutions that required adjudication 

were selected with a substantial (68%) reduction in adjudication effort and expense. Therefore, 

although not as efficient as the feature vector N selection technique, the use of a feature vector 

specifically trained to identify the issue was successful in selecting all future cases requiring 

adjudication, demonstrating high accuracy and substantially greater efficiency than a 100% 

review process. 

Table 5 

Solution Identification Accuracy of Feature F2 

Solution score F2 of A F2 of I or U Row totals 
Changed   0 125   125 
Unchanged 763 229   992 
Column totals 763 354 1,117 
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Discussion 

The results from Phase One suggest that for exploratory reviews the automation of case 

selection on the basis of classification tree vectors utilizing a criterion of difference score 

between human and automated scores can be a very efficient means for collecting solutions 

containing examples of scoring issues. However, this method would appear inadvisable for cases 

of first-order intervention as this efficiency comes at the cost of failing to select all cases that 

may require human intervention. That is, this method maximizes overall accuracy and efficiency, 

but may be too conservative in case selection for instances in which it is critical that 100% of 

relevant cases be selected. 

The results of Phase Two suggest that classification tree vectors can be used to automate 

case selection for first-order intervention when the appropriate criterion is utilized in the training 

set (e.g., the difference score between automated score and adjudicated score). Such automation 

provided for a substantial increase in efficiency (68% reduction in solutions reviewed) while 

selecting 100% of the cases that required adjudication. The more expansive and complex the 

factors contributing to the discrepancy, the more advantageous the ability to automatically 

generate an algorithm for the automated selection of cases requiring first-order intervention.  

The primary difference between the classification trees produced in Phase One and Phase 

Two is the use of a different, and more issue-specific, criterion for growing the classification tree 

in Phase Two. However, there are other options for controlling the accuracy and efficiency of 

automated case selection through specifying the relative cost of error types (errors of solution 

exclusion or inclusion in the automated selection) when producing the classification tree from 

the training set. Through this process differences in classification error severity can be controlled 

during tree production, and an examination of the resultant cross-validation classification 

accuracy can help the user determine if the classification tree is sufficiently accurate to be relied 

on for the selection of future cases. 
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Application 3 

Method 

Data  

This study used the same training set from Application 1 and Application 2. As the SOM 

is applied as an unsupervised learning technique, neither the human holistic scores nor the 

automated scores were included in the data. Instead, only the automated scoring feature scores 

were used as the data. 

Design and Procedure 

This study explored the potential for SOM, applied as an unsupervised technique capable 

of performing in the absence of human evaluations, to provide advantages similar to those of 

CART, thereby providing for additional efficiency if used in conjunction with CART in SME 

review processes. The data were analyzed using Neural Connection (SPSS, Inc., & Recognition 

Systems Group, 1998). Given that there were 14 feature vectors in Table 2, a 5 x 5 neuron grid 

was specified for SOM, creating a total of 25 possible neurons in the network.5 The composition 

of the resultant neuron clusters was compared to the previous CART feature vector results. 

Results 

The correspondence between results of SOM analysis and the original CART feature 

vectors is provided as Figure 7. In Figure 7 (which uses the same neuron representation as the 

iris data in Figure 2) each box represents the location of a particular numbered neuron in the 

5 x 5 SOM. Immediately beneath the neuron number is the number of solutions associated with 

the neuron. Beneath these neuron sample sizes are the feature vector codes (A through N) from 

Table 2 for cases classified with the neuron. In parentheses following each feature vector code is 

the percentage of solutions in the neuron having that feature vector. 

It is initially striking that a single neuron (Neuron 25) contains 45% of the total sample of 

cases (261) whereas the remaining neurons contain no more than 7% of the cases. However, the 

fact that all of the cases in Neuron 25 correspond to CART feature vector J, in which the human 

graders and the automated scoring were in perfect agreement, provides some reassurance that 

this peak in the neural net is an appropriate representation of the data. It is certainly not  
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Neuron 1 
n = 12 
B (50%) 
D (17%) 
H (33%) 

Neuron 2 
n = 0 

Neuron 3 
n = 10 
C (30%) 
J (10%) 
N (60%) 

Neuron 4 
n 
 = 3 
K (100%) 

Neuron 5 
n = 19 
C (11%) 
I (11%) 
K (11%) 
M (58%) 
N (11%) 

Neuron 6 
n = 0 

Neuron 7 
n = 13 
C (85%) 
G (15%) 

Neuron 8 
n = 13 
K (8%) 
L (8%) 
N (85%) 

Neuron 9 
n = 0 

Neuron 10 
n = 1 
C (100%) 

Neuron 11 
n = 6 
A (17%) 
J (50%) 
K (17%) 
M (17%) 

Neuron 12 
n = 0 

Neuron 13 
n = 19 
A (74%) 
E (26%) 

Neuron 14 
n = 0 

Neuron 15 
n = 11 
A (9%) 
F (45%) 
K (18%) 
L (9%) 
N (18%) 

Neuron 16 
n = 4 
I (25%) 
K (50%) 
L (25%) 

Neuron 17 
n = 2 
C (50%) 
E (50%) 

Neuron 18 
n = 3 
A (100%) 

Neuron 19 
n = 0 

Neuron 20 
n = 3 
J (100%) 

Neuron 21 
n = 5 
A (20%) 
I (40%) 
K (40%) 

Neuron 22 
n = 3 
E (33%) 
I (67%) 

Neuron 23 
n = 17 
A (12%) 
C (6%) 
J (76%) 
N (6%) 

Neuron 24 
n = 0 

Neuron 25 
n = 117 
J (100%) 

Figure 7. A 5 x 5 Kohonen self-organizing map output for the ARE data showing 

CART/Kohonen comparisons. 

 

surprising to find a peak that corresponds to feature vectors indicative of perfect agreement 

between automated and human scoring when the validity of the automated scoring has already 

been evaluated through such comparisons (Williamson et al., 1999). With the contribution of 

Neuron 25, the lower right-hand region of the SOM (Neurons 20, 23, and 25) represents a region 

of agreement between human and automated scores. This region comprises 97% of all feature 

vector Js in the sample and 84% of all feature vectors representing complete agreement in the 

sample. 
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Neuron 5 represents the cases corresponding to feature vector M from the CART 

analyses, with 92% of all feature vector M cases associated with this neuron. Similarly, Neurons 

3 and 8 are associated with feature vector N from the CART analyses, with 81% of all feature 

vector N cases associated with these two neurons. Taken together (and ignoring the three cases 

that appear in Neuron 4), these suggest that the upper right-hand region of the SOM (Neurons 3, 

5, and 8) represents a region in which the human graders were somewhat more lenient than the 

automated scoring (i.e., automated score of I and human score of A or automated score of U and 

human score of I). Yet, even with this region of the network associated with this interpretation, 

the separation between the M and N vectors, and their separate interpretations from the CART 

study, remain distinct. 

Neurons 13 and 18 are associated with feature vector A from the CART analyses, with 

85% of all cases with this feature vector associated with these two neurons. Similarly, Neuron 7 

is associated with feature vector C from the CART analyses (with 58% of all cases of feature 

vector C), and Neuron 1 is associated with feature vector B from the CART analyses (with 100% 

of all cases of feature vector B). Together these create a diagonal region in the network 

representing instances in which the human graders were more strict than the automated scoring 

(with human scores of U and automated scores of A). Yet, again within the larger region, the 

former CART feature vectors remain in distinct pockets of the SOM. 

Neuron 15 is associated with feature vector F from the CART analyses. All, 100%, of 

cases with this feature vector associated with this neuron represent cases in which the automated 

scoring was slightly more lenient than that of the human graders. Finally, the lower left-hand 

region of the SOM (Neurons 11, 16, 17, 21, and 22) may be vaguely described as a region in 

which human and automated scores are in complete agreement, although the number of cases 

associated with these neurons is small. 

Discussion 

The results suggest that there is a reasonably high degree of concordance between the 

SOM and the classification tree terminal nodes from CART analyses. The neurons (or 

neighborhoods of neurons) in the SOM tend to be associated with cases parallel to the cases 

classified by the individual feature vectors from CART. Furthermore, the regions of the SOM 

tend to be consistent with particular classes of human and automated scoring agreement. The 

lower right-hand region is a region of agreement, the upper right-hand region represents cases 
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where the human grading was more lenient than automated scoring, and the diagonal from the 

center to the top left-hand corner denotes a region of cases in which the automated scoring was 

more lenient than human grading. 

Given this consistency between the neurons and regions of the SOM (an unsupervised 

method) and the classification trees from CART analysis (requiring a dependent variable), the 

use of SOM may provide additional efficiencies in the review process by prescreening data for 

sampling human scores. For example, if the SOM for this sample of solutions had been produced 

prior to any human evaluation, and thus any CART analyses, the resultant neuron clusters of 

solutions could have been used to provide a stratified sampling of solutions to receive human 

grades If, for example, 15 solutions from each neuron were selected to receive human grades, 

then 149 (57%) of the solutions would be human graded rather than the entire set of 261 

solutions. Such a savings of 43% of human grading effort is not inconsequential because each 

human grading effort requires a committee of three graders and some degree of time for them to 

evaluate the solution, discuss their observations, and come to a determination of final score. 

Once the human scores were obtained on this stratified sample of solutions they could then be 

subjected to CART analyses on the basis of the smaller stratified sample to (presumably) 

produce a classification tree and feature vectors similar to those previously obtained with the 

larger data set. These CART results could then be used to the advantages suggested by the first 

two applications. Although this is insufficient evidence for operational use, these results suggest 

that SOM are worthy of further investigation with regard to their ability to reduce the burden of 

human evaluation in review processes in SME evaluation of automated scoring.6 

Conclusion 

This exploration of CART and SOM as automated tools for aiding SME evaluation of 

automated scoring of complex constructed responses has suggested potential for these methods 

to facilitate the development, validation, and operational evaluation of automated scoring. 

Classification trees appear to have promise as a means of facilitating the identification of sources 

of score discrepancies, in favor of either human graders or automated scoring. As such, CART 

may be a useful tool not only for facilitating the SME evaluation of automated scoring, but also 

for facilitating the comparison of multiple scoring systems. Those systems could be competing 

methods of automated scoring, or multiple human rubrics, or hybrids of the two. The results 

using classification tree feature vectors suggest CART as a potential technique for specific types 
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of automated case selection, including first-order human intervention in support of score validity, 

and for the exploration and documentation of issues that may contribute to the future evolution 

of automated scoring. The apparent capacity of SOM to classify complex data into proximity 

regions consistent with specific trends, specifically with regard to the degree and direction of 

agreement between automated and human scores, suggests the potential for neural network 

techniques to become a useful tool in investigations of complex constructed-response data. 

The exploration of these techniques has provided a promising beginning to the 

development of potential automated tools capable of facilitating SME evaluation of automated 

scoring. The specific results of this investigation of classification trees are encouraging. The 

ability of classification tree vectors to be customized for the specific purpose of automated case 

selection processes, both by altering the criterion variable used to grow the trees and by adjusting 

the weights for classification error to reflect the cost of specific case classification and selection 

errors, suggests greater potential for this technique as such an automated tool. As an 

unsupervised procedure, SOM has promise as a method of reducing the need for expert human 

graders in order to train a model (such as a classification tree), to identify important issues in 

complex solutions, and to classify the solutions by specific trends. Together, these techniques 

offer a promising start for further investigations into automated tools intended to facilitate SME 

processes in automated scoring. Of particular interest is the potential for the tools to make the 

procedures in development, validation, and operational evaluation more efficient and cost-

effective. More assessments are beginning to use fully automated administration and scoring of 

complex constructed-response tasks. Therefore, it will be necessary to direct more research 

toward such applied issues and tools, particularly with regard to efficiency and cost-effective 

implementation, in order to maximize the number of assessment domains that can explore the 

potential advantages of automated scoring for complex constructed-response tasks.  
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Notes 
1 This author previously published under the name Anne S. Hone. 

2 The authors used CART (classification and regression trees) software published by Salford 

Systems for the classification and regression tree analyses in this paper. 

3 The Gini index is named after Italian statistician and demographer Corrado Gini (1884-1965) 

and is a numerical representation of a geometric depiction known as a Lorenz Curve, an 

indicator of economic inequality. The Lorenz curve is a plot of cumulative percentage of 

population on the X-axis and cumulative percentage of income on the Y-axis, for which a 45- 

degree diagonal from the origin represents perfect equity of income. The Gini index is the 

ratio of the difference between the observed distribution of income and perfectly equitable 

distribution (area between the curves) to the perfectly equitable distribution of income (area 

under the 45-degree curve for perfect equity, which is always equal to .5). As a numeric 

representation of the Lorenz Curve, it varies from 0 to 1 with 0 indicating perfect equality of 

distribution of wealth across a population and 1 indicating the entirety of income 

concentrated in a single individual. (Note that Gini index computation in CART is 1 minus 

the ratio rather than the direct ratio, thereby resulting in the reversal of the meaning of values 

of 0 and 1 from the Gini index computation in economics.) Other methods for the 

partitioning in CART include entropy, which derives its name from the common definition of 

entropy as an indicator of the orderliness of a system, whereby a more highly ordered system 

(low entropy) can be described more concisely than a more disordered system. The Gini 

index targets the extraction of single classes of the dependent variable in partitioning, 

whereas the Entropy index operates by segmenting the dependent variable classes into two 

groups such that each of the two groups contains half the number of cases in the data. The 

procedure then searches for the partition that optimally separates these two groups of data. A 

similar method for establishing a quality-of-split criterion is called twoing. As one might 

imagine, there are a number of variations on these approaches to partitioning and the 

interested reader can refer to Ripley (1996, p. 217) for more information. 

4 For example, Williamson, Bejar, & Hone (1999) found that on occasion a committee of 

graders reviewing scores could not justify their own committee’s holistic score even with 

reference to their original documented criteria. This suggests that committee processes 
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directed at more fine-grained features and specific aggregation processes would be even 

more likely to suffer difficulties. 

5 Selecting an optimal number of artificial neurons to specify in neural network applications 

remains an inexact process. For supervised neural networks, in which there are a targeted 

number of clusters expected a priori, the number to specify is straightforward since it should 

be no less than the number of desired clusters. When there is no a priori expectation, such as 

for unsupervised networks, then the training can occur with an excessive number of clusters. 

While excessive numbers of clusters provide a certain margin for ensuring separability, this 

comes at the expense of an increased risk of difficulty of interpretability of resultant clusters 

as more minor differences in variable vectors result in classification in different neurons. One 

approach that attempts to balance these concerns generates multiple neural networks with 

different numbers of artificial neurons (as well as layers and dimensions) and to prefer 

networks that produce a balance between the number of neurons with “peaks” (high n’s) and 

“valleys” (low n’s). The decision regarding the number of artificial neurons to specify is 

related to the ratio of number of observations to number of artificial neurons, the variance 

among observations, and the researcher’s prior expectations.. As such, the decision regarding 

the number of artificial neurons to select is similar to the determination of the number of 

factors to extract in exploratory factor analysis, and in the future such factor analytic 

techniques as eigenvalues and scree plots may inspire similar techniques for neural network 

specification. In this research the neural networks were trained using unsupervised 

techniques, but with prior information from CART analysis that suggested there should be no 

less than 14 neurons. To ensure adequate separation among the patterns of neurons and to 

seek a mixture of “peaks” and “valleys” of observation, clusters across the neurons a 5 x 5 

neuron grid was chosen. 

6 A reviewer suggested that this portion of the study could be beneficially extended through a 

comparison of the results from this sampling procedure to both the full CART sampling 

results and one or more smaller random samples. We agree that this is a desirable extension 

to the study and are regrettably unable to conduct further analyses of these data due to the 

expiration of our usage agreement with the owners of the data. It is hoped that future research 

along similar lines will be able to incorporate this recommendation. 
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